Estimated Calendar Year 2006 Irrigation Water Supply Based on May 1 Indicators (Acre-Feet)

2006 Estima		Bessemer	Highline	Oxford	Otero	Catlin	Holbrook	Fort Lyon	LA Consol	Fort Bent	Amity	Lamar	Hyde	Buffalo
Range of estimated Headgate Delivery at the 95% Confidence Interval upper value		69,048	81,250	31,535	9,563	105,341	41,951	280,139	35,068	19,943	95,745	52,454		
	lower value	62,796	68,292	25,622	8,123	93,408	31,069	211,968	30,818	15,672	75,025	41,217	2,140	22,500
Expected fa	rm yield													
	upper value	3.00	25.51	24.43	1.52	5.06	2.31	1.89	57.33	1.51	1.92	1.81	4.00	4.00
	lower value	2.73	21.44	19.85	1.29	4.48	1.71	1.43	50.38	1.18	1.50	1.43	1.38	4.36
1976- 2005 Average Ditch Headgate														
Delivery		63,600	93,500	27,700	7,560	89,700	48,800	243,000	29,000	17,300	75,900	44,600	2,140	22,500
Farm Yield per share		2.77	29.36	21.46	1.20	4.31	2.69	1.64	47.41	1.31	1.52	1.54	1.38	4.36
Percent of														
Average	upper	108.57	86.90	113.85	126.50	117.44	85.96	115.28	120.92	115.28	126.15	117.61	100	100
	lower	98.74	73.04	92.50	107.45	104.13	63.67	87.23	106.27	90.59	98.85	92.41	100	100

If you have any questions, please contact:
USDA / Risk Management Agency / Topeka Regional Office, 3401 SW Van Buren, Suite 2, Topeka, KS 66611 Telephone: (785) 266-0248 Page 1 of 3

June 16, 2006

Use of this information is strictly voluntary. Irrigation supply estimates are based on surface water supply indicators that include direct flow estimates, "historic" precipitation effects, and any applicable storage supplies by canal. The irrigation water supply diversion estimates were calculated using standard statistical methods in water resources studies. They are developed by those in the business of regulating or monitoring water availability. Estimates are based on the best information available at the time the data are released. Because these numbers are only estimates and are subject to individual interpretation, the state and division engineers cannot be held liable for any loss that might result from an individual relying solely on these diversion estimates for their management decisions. Actual irrigation supplies may differ. The USDA does not control or guarantee the accuracy, relevance, timeliness, or completeness of this information. Producers and/or approved insurance providers may provide information to be used in lieu of or in addition to these figures to support planting decisions.

Snowpack and Water Supply Conditions for the Arkansas Basin as of June 1, 2006

The warm and dry weather patterns, which began in early April, have continued through May. These conditions have contributed to a rapid melt of the snowpack at higher elevations in the basin. By June 1, the Arkansas Bain's snowpack had decreased to 51% of average. On that date, only one of the six reporting sites continued to have snow (Fremont Pass at 83% of average, 11,400' elevation).

Precipitation measured at the six SNOTEL sites in the basin was 37% of average during May and has been below average during five of the eight months of the 2006 water year which began on October 1, 2005. Current water year totals are now 76% of average.

As a result of the dry weather patterns, runoff forecasts for the spring and summer months suffered another reduction on June 1. Spring (April and May) precipitation at both higher and lower elevations contributes significantly to runoff in the Arkansas Basin. With continued below average precipitation, coupled with above average temperatures, runoff forecasts continue to be adjusted accordingly. Below are the runoff forecasts in the Arkansas Basin as of June 1, 2006.

ARKANSAS RIVER BASIN						
		50% %	of	max	min	30-yr
Forecast Point	period	(KAF)	avg	(KAF)	(KAF)	avg
Chalk Ck At Nathrop	APR-JUL	14.4	63	22.0		23.0
	JUN-JUL	10.0	56	13.6	4.80	18.0
	APR-SEP	18.4	68	28.0	11.6	27.0
	JUN-SEP	14.0	61	23.2	7.10	23.0
Arkansas River At Salida (1)	APR-JUL	225	88	275	181	255
	JUN-JUL	130	70	181	87.0	187
	APR-SEP	270	87	340	210	310
	JUN-SEP	175	71	244	117	245
Grape Creek Near Westcliffe	APR-JUL	2.5	16	7.20	1.30	16.1
	JUN-JUL	1.33	15	6.10	0.18	8.80
	APR-SEP	5.6	29	12.7	1.80	19.6
	JUN-SEP	4.4	36	11.6	0.60	12.3
Pueblo Reservoir Inflow (1)	APR-JUL	270	70	345	210	385
	JUN-JUL	165	64	242	103	259
	APR-SEP	355	73	465	265	485
	JUN-SEP	250	69	359	161	360
	APR (OBS)	18.6	54			34.6
	MAY (OBS)	85.5	96			89.2
	JUN	105	65			162.2
	JUL	61	63			97.0
	AUG	52	84			62.2
	SEP	33	85			38.7
Huerfano River Near Redwing	APR-JUL	5.7	46	7.50	5.00	12.3
3	JUN-JUL	2.90	38	4.70	2.20	7.70
	APR-SEP	7.2	47	9.6	6.80	15.5
	JUN-SEP	4.4	40	6.80	4.10	11.0
Cucharas River At Boyd Ranch Nr La		3.0	27	4.40	2.50	11.3
	JUN-JUL	1.20	20	2.60	0.60	6.00
	APR-SEP	3.8	29	5.70	3.00	13.0
	JUN-SEP	2.00	26	3.80	1.09	7.80
Trinidad Lake Inflow	MAR-JUL	10.0	29	14.6	8.50	34.0
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	JUN-JUL	3.5	18	8.10	2.10	19.0
	APR-SEP	17.0	39	29.0	12.3	44.0
	JUN-SEP	11.3	37	23.2	6.80	31.0
	O OIN-DEP	11.3	31	43.4	0.00	31.0

Max is 90 percentile and min is 10 percentile. Averages are for the 1971-2000 period. All volumes are in KAF (1,000 Acre-Feet).

footnotes: 1) streamflow is adjusted for upstream storage